NAG C Library Function Document

nag_zhb_norm (f16uec)

1 Purpose

nag_zhb_norm (f16uec) calculates the value of the 1-norm, the infinity-norm, the Frobenius norm, or the maximum absolute value of the elements, of a complex n by n Hermitian band matrix.

2 Specification

3 Description

Given a complex n by n Hermitian band matrix, A, nag_zhb_norm (f16uec) calculates one of the values given by

$$\begin{split} ||A||_1 &= \max_j \sum_{i=1}^n |a_{ij}|, \\ ||A||_\infty &= \max_i \sum_{j=1}^n |a_{ij}|, \\ ||A||_F &= \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}, \\ \max_{i,j} |a_{ij}|. \end{split}$$

Note that, since A is symmetric, $||A||_1 = ||A||_{\infty}$.

4 References

The BLAS Technical Forum Standard (2001) www.netlib.org/blas/blast-forum

5 Parameters

1: **order** – Nag OrderType

Input

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **norm** – Nag_NormType

Input

On entry: specifies the value to be returned:

if $norm = Nag_OneNorm$, the 1-norm;

if **norm** = **Nag_InfNorm**, the infinity-norm;

if **norm** = **Nag_FrobeniusNorm**, the Frobenius (or Euclidean) norm;

[NP3645/7] f16uec.1

if $norm = Nag_MaxNorm$, the value $\max_{i,j} |a_{ij}|$ (not a norm).

Constraint: norm = Nag_OneNorm, Nag_InfNorm, Nag_FrobeniusNorm or Nag_MaxNorm.

3: **uplo** – Nag UploType

Input

On entry: specifies whether the upper or lower triangular part of A is stored as follows:

if $uplo = Nag_Upper$, the upper triangular part of A is stored;

if $uplo = Nag_Lower$, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: **n** – Integer

Input

On entry: n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5: \mathbf{k} – Integer

Input

On entry: k, the number of sub-diagonals or super-diagonals of the matrix A.

Constraint: $\mathbf{k} \geq 0$.

6: ab[dim] - const Complex

Input

Note: the dimension, dim, of the array **ab** must be at least $max(1, pdab \times n)$.

On entry: the n by n Hermitian band matrix A. This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements a_{ij} depends on the **order** and **uplo** parameters as follows:

```
if order = Nag_ColMajor and uplo = Nag_Upper, a_{ij} is stored in \mathbf{ab}[k+i-j+(j-1)\times\mathbf{pdab}], for j=1,\ldots,n and i=\max(1,j-k),\ldots,j;
```

if order = Nag_ColMajor and uplo = Nag_Lower,

$$a_{ij}$$
 is stored in $\mathbf{ab}[i-j+(j-1)\times\mathbf{pdab}]$, for $j=1,\ldots,n$ and $i=j,\ldots,\min(n,j+k)$;

if order = Nag_RowMajor and uplo = Nag_Upper,
$$a_{ij}$$
 is stored in $\mathbf{ab}[j-i+(i-1)\times\mathbf{pdab}]$, for $i=1,\ldots,n$ and $j=i,\ldots,\min(n,i+k)$;

if order = Nag_RowMajor and uplo = Nag_Lower,
$$a_{ij} \text{ is stored in } \mathbf{ab}[k+j-i+(i-1)\times\mathbf{pdab}], \text{ for } i=1,\ldots,n \text{ and } j=\max(1,i-k),\ldots,i.$$

7: **pdab** – Integer

Input

On entry: the stride separating row or column elements (depending on the value of **order**) of the matrix A in the array ab.

Constraints:

```
if order = Nag_ColMajor, pdab \geq k + 1; if order = Nag_RowMajor, pdab \geq \max(1, n).
```

8: r - double *

Output

On exit: the value of the norm specified by norm.

9: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

f16uec.2 [NP3645/7]

6 Error Indicators and Warnings

NE_INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 0.
On entry, \mathbf{k} = \langle value \rangle.
Constraint: \mathbf{k} \geq 0.
On entry, \mathbf{pdab} = \langle value \rangle.
Constraint: \mathbf{pdab} \geq \mathbf{k} + 1.
```

NE_BAD_PARAM

On entry, parameter \(\nabla value \rangle \) had an illegal value.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).

8 Further Comments

None.

9 Example

See Section 9 of the document for nag_zpbcon (f07huc).

[NP3645/7] f16uec.3 (last)